The Vitamin D Deficiency Dilemma and What It Means to Bones…and Our Health

Shedding some light on the high and low of it

Vitamin D deficiency has become a growing trend in the United States and is now prompting physicians in different areas of specialty to test Vitamin D levels in patients.Our Need for Vitamin D

While low Vitamin D levels have always played an important role in orthopedics, insufficient levels are now also linked to a wide range of other health issues – from Diabetes and Cardiovascular Disease to cancer (1).

Measuring Vitamin D status in blood levels of a form known as 25-hydroxyvitamin D [25(OH)D] has become an important part of health screenings.

While orthopedic specialists treating patients for a bone fracture today routinely test Vitamin D levels in patients, increasingly physicians in other areas of specialty are including such tests for their patients as well.

A Growing Trend in Vitamin D Deficiencies

A growing trend in low Vitamin D levels among a broad range of ages has prompted the National Institutes for Health (NIH) and Centers for Disease Control and Prevention (CDC) to assess possible causes, further exploring the link between Vitamin D in not only bone health but other diseases as well.  The growing trend, which is seen not only in the United States but worldwide, has been called a pandemic and prompted researchers to launch studies into the causes and the implications on overall health (2).

It is believed that lifestyle changes, growth in obesity, increase use of medication and changes in diet (reduction in nutrient rich foods and increase in processed, packaged nutrient deficient) are all contributors to this trend.

While some study results have caused daily intake recommendations to increase from 200 IU to 400 to 600 IU to address the deficiencies, many believe much higher amounts are required (4,000 to 10,000 IU daily) to reach optimal levels and achieve maximum health benefits.  Recommended daily intake and appropriate supplementation for those showing a deficiency continue to evolve. Recommendations established by the Institute of Medicine, 2011 are used as a general guideline. Ongoing research will continue to fuel this discussion.

Vitamin D and its Role in Bone Health

Vitamin D is a fat-soluble vitamin, which is essential for maintaining mineral balance in the body. Its most active form in humans is Vitamin D3 (cholecalciferol), which can be synthesized in the skin with exposure to ultraviolet-B (UVB) radiation from sunlight.

Vitamin D3 conversion and use within our body.

Vitamin D3 metabolism and use within our body.

Plants can synthesize ergosterol by ultraviolet light, which is converted to vitamin D2 (ergocalciferol), but is a less active form of vitamin D (less than 30% of Vitamin D3) (3).

Vitamin D is necessary for the proper absorption of calcium, which together have shown to reduce risk of osteoporosis, assist in the healing of bone fractures and decrease risk of future bone breaks. Vitamin D has other roles in the body as well, including modulation of cell growth, neuromuscular and immune function and reduction of inflammation (4).

When exposure to UVB radiation is insufficient, adequate intake of vitamin D from the diet (Vitamin D-fortified foods and supplements) is essential for optimal health.

After Vitamin D is consumed in the diet or synthesized in the skin, the biologically inactive form then enters the circulation and is transported to the liver, where 25(OH)D is formed.  This is the major circulating form of vitamin D and the indicator of vitamin D status in the body. Increased exposure to sunlight or increased dietary intake of Vitamin D-enriched foods and/or Vitamin D3 supplements increases blood levels of 25(OH)D, making the blood 25(OH)D concentration an effective indicator of Vitamin D nutritional status.

Causes of Vitamin D Deficiency

While studies continue to explore possible causes of the widespread Vitamin D deficiency, a number have already been identified.  Some are the result of societal changes such as increased use of sun blocks/sun screens for fear of skin cancer (limiting unprotected sun exposure) and changes in our diet (processed, nutrient deficient foods versus nutrient and Vitamin D-rich foods). Both of which have gradually reduced the amount of Vitamin D intake we receive.

 Other possible causes of Vitamin D Deficiency include:

1.) Obesity

Some studies suggest that a higher BMI leads to lower 25(OH) D (4). Greater amounts of subcutaneous fat sequesters more of the vitamin and alter its release into circulation (5).

2.) Naturally dark-skinned individuals

Greater amounts of the pigment melanin in the epidermal layer (resulting in darker skin) reduces the skin’s ability to produce Vitamin D from sunlight.

3.) Certain Medications

Corticosteroid medications such as prednisone (often prescribed to reduce inflammation) can reduce calcium absorption and hinder Vitamin D metabolism. Other weight-loss, cholesterol-lowering and epileptic seizure medications have also been implicated in reduced calcium absorption and Vitamin D levels.

4.)  Age

As we age, our skin cannot synthesize Vitamin D as efficiently. The elderly are also likely to spend more time indoors, leading to inadequate intakes of the vitamin.

Increasing Vitamin D Levels

While it is difficult today to reach the recommended levels of Vitamin D without supplementation, below are some of the best sources that may reduce the quantity of supplements required.

Calcium and Vitamin D-rich foods can help support strong bones, decrease risk of disease.

Calcium and Vitamin D-rich foods can help support strong bones, decrease risk of disease.

  •  Unprotected sun exposure (10 – 20 minutes several times a week depending on skin color and geographical location).
  • Vitamin D-rich foods such as fatty fish (salmon, tuna, mackerel), beef liver, cheese and egg yolks.
  • Vitamin D-fortified foods such as milk, orange juice, margarine and butter.
  • Vitamin K2, which is linked toimproved use of Vitamin D3 and calcium (6).

 

References

  1. Holick MF. Vitamin D: importance in the preventioin of cancers, type 1 diabetes, heart disease, and osteoporosis.  Am J Clin Nutr. 2004;79(3):362-371.
  2. Holick MF. The vitamin D Deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med. 2008;29(6):361-8.
  3. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89(11):5387-5391.
  4. Institutes of Health, Office of Dietary Supplements – https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ .
  5. Vimaleswaran KS, Berry DJ, Lu C et al. Causal relationship between obesity and Vitamin D status:  bi-directional Mendelian randomization analysis of multiple cohorts. 2013 – http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001383.
  6. National Institutes of Health, Office of Dietary Supplements – https://ods.od.nih.gov/factsheets/VitaminK-HealthProfessional/

 

Dr. Korsh Jafarnia is one of Houston’s leading board certified, fellowship trained hand and upper extremity specialists.  A member of UT Physicians, Dr. Jafarnia is affiliated with Memorial Hermann IRONMAN Sports Medicine Institute at Memorial City and the Texas Medical Center.  He also serves as an assistant professor in the Department of Orthopedic Surgery at McGovern Medical School. Call 713.486.1700 for an appointment, or go to www.korshjafarniamd.com to

Hoverboard Hazards

The exciting new phenomena of “hoverboarding” has made hoverboards one of the most popular technological “toys” on the market today.  Intended for agile adolescents, its appeal has also drawn parents and other adults nostalgic for those days gone by.

The technology of the hoverboard, known as a smartboard or balance board as well, doesn’t actually create a hover but rather a forward and backward motion on a sideways skateboard of sorts, with either a large single center wheel or two smaller ones at each end.  It is automated, can reach a formidable speed of 16 mph and relies on body movement for navigation. It is basically a hands free, self-balancing electric scooter.

Concern over hoverboard safety grows amid increase in injuries.

Concern over hoverboard safety grows amid increase in injuries.

They have become the vehicle of choice for students travelling around campus and preteens maneuvering around the house and down the street to visit friends.  They light up, are stealth quiet, move as fast as one’s imagination …. and leave hands free for any other activity desired on the fly.

Unfortunately, while the mainstream hoverboard never actually leaves the ground, its ability to send riders airborne is causing increasing concern.

In fact, the Consumer Product Safety Commission has reported receiving dozens of hoverboard-related injuries from across the United States.  Houston hospitals have also reported in a recent Associated Press article seeing a sharp increase in the number of hoverboard accidents sending adult and young riders alike to the ER and urgent care clinics.

Colleges are not only restricting their use on campus, as a result of the injury risk (to the user and passers by) but also the fire hazard their electrical system poses.  The hoverboard fire hazard is covered extensively in other hoverboard reports.

Among the most common musculoskeletal injuries seen from hoverboard use include concussions, fractures, contusions and abrasions.

Concussions

While most frequently seen in sports such as football and soccer, concussions are increasingly reported in hoverboard accidents.  With no recommended safety wear, the speed and maneuverability of the device is resulting in high impact falls and collisions – resulting in concussions. The primary symptoms of a concussion include:

  • Headache
  • Trouble concentrating, feeling “foggy”
  • Nausea
  • Delayed reaction times
  • Dizziness, lightheadedness
  • Sensitivity with bright lights or loud sounds
  • Irritability

 If a concussion is suspected, an evaluation should be conducted by a physician and hoverboard and other balancing activities should be avoided.

Fractures

Wrist fractures are among the most common types of fractures seen in hoverboard accidents – distal radius fractures among the most common type of wrist fracture.  This is often the result of breaking a fall or harsh impact with an outstretched arm. Other hoverboard fractures and dislocations have been seen in the fingers. Symptoms of a fracture or dislocation can be evident with extreme pain, swelling and slight disfigurement or subtle with only slight swelling and pain.

Most wrist fractures and finger fractures and dislocations can be treated nonsurgically, depending on the severity of the fracture or dislocation.  A splint or other bracing may be indicated, along with anti-inflammatory medication and rest/refrain from extracurricular activity.

Contusions and Abrasions

Collisions causing contusions and abrasions are frequently reported on hoverboards in the absence of safety gear. While most are minor cuts and scraps, some may result in open wounds requiring stiches, while potentially damaging nerves and other soft tissue.  Swollen, discolored injuries lasting more than a month should be further evaluated by a physician.

Preventing Hoverboard Injuries

The lack of safety standards and recommended safety gear/wear is a concern among hoverboard retailers and healthcare providers alike.  But, parents do not have to wait until such recommendations are established.  If a hoverboard is in your family’s future, take the proper precautions. As with any sport, safety gear recommended or not, will provide a bit of assurance.

Cyclists travelling at much less speeds not only have both hands and legs navigating a two-wheeled structure designed for the road, but also helmets, gloves, shoes and other gear designed for safety and the sport. This is also true of rollerbladers and skateboarders. Invest in the safety of your hoverboard rider and purchase protective safety gear.

Help young riders understand the potential risks for injury and encourage that they err on the side of caution to avoid the ER.

Have fun and be safe!

Read a hoverboard article from a young contributing writer.

 

Baseball Fit – Preventive Exercises for a Winning Season

As weather warms and winter sports wind down, attention turns to the promise of a new baseball season and the championships ahead.

Now is the time to begin preparing.High School baseball

At the core of a successful team are strong players – physically strong, well rested and well conditioned.

Baseball is one of the few sports played almost daily throughout the entire season.  For young players beginning in little league, this amounts to a lot of plays by high school.  The frequency of repetitive stress injuries in youth baseball have increased over the years, particularly with the rise in special “elite” teams and extended seasons. This is most evident in young pitchers, on which much research has focused and for which Pitch Count guidelines have been developed.

Although baseball is not considered a contact sport, injuries can result from contact with the ball and other players, as well as poor form/technique, or an awkward movement during a play.

Some of the most common baseball injuries include:

  • Injuries in the shoulder and elbow (Little Leaguer’s Shoulder, Little Leaguer’s Elbow)
  • Knee injuries
  • Muscle pulls
  • Ligament injuries
  • Fractures (Finger, Distal Radius/Wrist)
  • Concussions 

While some injuries resulting from collision with another player are getting hit by the ball cannot be avoided, exercise can aid in reducing risks or preventing many repetitive stress related injuries.

Repetitive injuries are the result of repetitive use, stress and trauma to the soft tissues of the body (muscles, tendons, bones and joints), which are not given adequate time for proper healing. They are sometimes called cumulative trauma, repetitive stress or overuse injuries.

To avoid such repetitive stress conditions and muscle fatigue, players should have a dedicated fitness program – ideally one that is also specific to the position they play.  This should include overall strengthening and endurance, along with specific exercises to equally strengthen the muscles of the limb(s) most used. Such fitness programs should also include stretching and rest between play.

Exercise programs should also be age appropriate. Young, developing players are encouraged to build strength through resistance rather than weights. Involvement in other seasonal sports such as swimming and running can also provide excellent overall strengthening and endurance.

Strength and Conditioning Exercises – Upper Body

As a throwing sport, exercises for baseball concentrate heavily on the upper body – arms and shoulder. Core strength is also essential for pitching velocity, hitting power and running speed.

The key to any exercise program is the balanced/equal strengthening of muscle groups. For the upper body, this includes triceps/biceps, trapezius, rotator group, and deltoids.

Some Effective Arm, Shoulder and Core Exercises Include:

  • Resistance bands – These can be effective in building arm and shoulder strength. (View video on how these bands are used in exercise programs.)
  • Push ups – Traditional push ups are very effective in building upper body strength (arms, shoulders, back and core/abdominal muscles).
  • Pull ups – Using your own body weight/strength these work on the biceps, upper shoulder and back, upper abdominals and obliques.
  • The Plank – strengthens the core, lower back and oblique muscles. (View video demonstration of the Plank.)

Exercises to Improve Leg Strength

Lower body strength and conditioning is as important as upper body training for young athletes. Leg strength impacts throwing velocity, bat speed/force and running speed.

Squats, lunges and running are among the most effective ways to strengthen the lower body.

Stretching

Stretching is a very important part of an exercise program for athletes in any sport. During exercise and play muscles contract. When muscles contract, they produce tension at the point where the muscle is connected to the tendon. Stretching helps lengthen, relax and restore muscles to their natural state.

Stretching following activity is as important as stretching while warming up before practice and play.

Some easy, yet effective stretches include:

  • Elbow Pulls – Raise the right arm as though asking a question and drop the forearm behind the head though leaving the elbow in the air. Pull the elbow to the left with the left arm until you feel the stretch, hold briefly then repeat several times. Do the same on the opposite side.
  • Cross Body Arm Pulls – Straighten your right arm and pull it across the front of your body, cradling the forearm and elbow with the left hand, pull the arm towards the left across the body until you feel the stretch. Hold the stretch briefly, then repeat on the opposite side.
  • Shoulder Stretch – Lay face down on a floor mat and stretch arms overhead to form a “Y,” with palms facing down on the floor. With forehead on the ground, retract shoulder blades while lifting arms off the ground (still outstretched). Hold for a couple of seconds while squeezing the shoulder blades together. Be careful not to “shrug” the shoulders up. Return to starting position and perform several sets of 10 repetitions. To work the back a little differently, perform this same exercise with the arms straight out to your sides, forming the shape of a “T.”
  • Runner’s Lunge – Position into a deep lunge on your right leg, drop the knee of your left leg and lean forward over the right quad until you feel the stretch, hold for several seconds. Repeat on opposite leg.
  • Hamstring Stretch – Stand flat on the floor with feet a little less than hip width apart. Lean forward and place palm of your hands flat on the floor just in front of your feet, hold for several seconds.

TOP PREVENTION TIP

Resting is as important as any of the components in a successful training program.

Summer Sideliners

Common summer injuries of the hand, wrist and elbow

As we hike, bike, raft and climb our way through summer adventure, mishaps are bound to happen.  Some of the most common we see include wrist fractures, tennis elbow syndrome and cuts and lacerations to the hand.

Recognizing and treating mishaps that may occur while maximizing these brief few summer months can make a difference in how ready we are for all that awaits us in the fall.

Wrist Fractures

The wrist is susceptible to injury, often used as a first line of defense to break a fall, shield us from impact and soften a blow.  The wrist is comprised of eight small carpal bones, two forearm bones (radius and ulna) and four articulations or joints – which allow the wrist to bend and straighten, move from side-to-side and twist with a broad range of motion.  A force to the hand and wrist may result in a fracture of any one or several of these bones.  While a fracture to one of the smaller carpal bones may only be visible on x-ray, more common distal radius fractures are usually evident – crooked or deformed in appearance.  A wrist fracture may cause pain and swelling and should be immediately addressed.

Tennis Elbow Syndrome (Lateral Epicondylitis)

Though named for the sport frequently causing the condition in tennis players, Tennis Elbow Syndrome is in fact most often caused by everyday activity and diagnosed in those who have never played tennis.  Affecting the outside (lateral) portion of the elbow, tennis elbow syndrome is considered an “overuse” condition.  It is the result of strain placed on the muscles and tendons that attach to the bone.  Also caused by trauma, tennis elbow syndrome can cause pain with gripping, lifting and grasping.

Cuts and Lacerations

Cuts and lacerations to the hand are very common during the summer months as our hands are integral in most outdoor activity and projects. Tendon lacerations are also often the result of trauma to the hand or fingers.  Tendon lacerations may affect either the flexor or extensor tendons.  These types of lacerations often also result in other deep structure damage and require surgical repair.  The cut ends of a tendon must be brought back together in order for the cells inside the tendon to begin the healing/repair process.  Preventing infection in an open wound is also a primary concern with these types of injuries.