It’s No Fish Tale – These Uncommon Hand & Upper Extremity Fishing Injuries Can Really Happen!

Located on the Gulf of Mexico and home to hundreds of lakes, it’s no wonder that the Texas coast is the playground to fishing enthusiasts far and wide.

Barracuda

unhook stingray2But even the seasoned sportsman can fall victim to some unlikely fishing injuries affecting the hand and upper extremity. In fact, fishermen (and women) put themselves in danger every time they come into contact with marine life – unpredictable behavior/aggressive and often forceful nature of a catch, prevalence of less commonly treated bacteria, unsanitary tools/equipment, poor wound care – all contributing to some common and not so common injuries that hand specialists see in a region like the Texas Gulf Coast.

Some common fishing injuries and conditions with which a Texas hand surgeon is all too familiar include:

fillet_2Many of these common injuries and conditions are treated non surgically and follow the same treatment protocol as any other patient with the same diagnosis – regardless of the cause.

Uncommon Hand & Upper Extremity Fishing Injuries and Conditions

Though there is very little that surprises a hand specialist practicing in “sportsman’s paradise,” an unusual injury associated with fishing will occasionally make its way to a Texas medical clinic.

Some of these uncommon injuries and conditions include:

  • Sting Ray Laceration
  • Fish Bite / Impalement
  • Fish Handler’s Disease / Bacterial Infection
  • Lodged Fish Bones, Fin Spine 

Unlike other injuries that break the skin, these types of fishing injuries are particularly concerning.  Fish and other marine life carry bacterial infections within their bodies, as well as on their skin, which can affect humans if certain precautions are not taken immediately. Some types of bacteria found in marine life are not commonly seen and do not respond to conventional antibiotics frequently used for infections.

Additionally, some marine life such as the Sting Ray utilize defense mechanisms that require special attention when used against a fisherman.

Sting Ray Laceration
While many sting ray injuries involve an inadvertent encounter between a foot or other lower extremity and a sting ray’s barb, some have occurred to the hand or wrist while trying to remove a sting ray from a fishing net or line.

These types of lacerations require more than bandaging.  Not only do sting ray barbs pierce like a weapon, all sting rays are armed with at least one serrated venomous spine at the base of their whip-like tail.  Short-tail sting rays have two tail spines: a slender spike in front of a large, jagged bayonet (1).

In addition to possible damage to muscle, tendons and nerves that can occur from the physical impalement of a sting ray barb, its venom is comprised of many different substances that can cause tissue to break down and die.
Some of the symptoms that Sting Ray venom can cause include:

 

  • Immediate and severe pain radiating up the affected limb
  • Bleeding and swelling in the affected area
  • Sweating
  • Faintness, dizziness and weakness
  • Low blood pressure
  • Salivation, nausea, vomiting, diarrhea
  • Headache
  • Shortness of breath (2)

 

Medical attention is recommended for all sting ray injuries.  Minimally, the wound will be cleaned with warm water to remove the venom and a tetanus booster given if it has been more than five years since the last tetanus booster. Tetanus prevention is required if the patient has never had a tetanus vaccination.  Antibiotics may also be required, and depending on the severity of the injury and amount of damage sustained (often the result of the delay in seeking treatment), surgical intervention to repair soft tissue damage and/or a period of rehabilitation may be required to restore strength to the injured limb (2).

Fish Bite and Impalement
While not every fish injury comes with a venomous double blow, the high risk of bacterial infection and soft tissue damage can be just as serious.  Many fish have sharp teeth, tails and pointed features that can easily break the skin.  Wrestling the unwilling catch onto the boat or beach can leave some sportsmen a bit worse for the wear.

 

Aside from the bacterial concerns that come with marine life, the forceful impact from a sharp feature of the fish can result in soft tissue damage that may require surgical repair and/or months of rehabilitation to restore hand and upper extremity function – as the hand alone is comprised of approximately 34 muscles, 120 known ligaments, and 50 nerves!

 

These types of deep puncture wounds or lacerations in the hand are also at high risk of infection and should be monitored closely.  A delay in the appropriate treatment can lead to complicated tenosynovitis and horseshoe abscess.  Additionally, marine life bacterial infections resulting from Mycobacterium marinum (M. marinum) do not respond to some conventional antibiotic treatment such as amoxicillin (3).

Fish Handler’s Disease
Not every fishing-related Mycobacterium marinum infection is the result of an obvious injury/wound.  A condition known as Fish Handler’s Disease can impact those frequently handling fish and generally affects the hands.  Any inconspicuous cut or small opening on the skin can allow the bacteria to enter the body.  The bacteria’s inability to proliferate in the warm body confines it to the affected area.

 

Common symptoms include swelling, tenderness, and bluish-purple spots. Fish Handler’s Disease is treated with special antibiotics used specifically for this type of bacterial infection.  Recovery can take months.

Lodged Fish Bones, Fin Spine
Occasionally in the handling of fish a fish bone or fin spine can lodge in the hand. Though this may not be painful or immediately worrisome to the injured party, these types of injuries are concerning.  Such injuries often leave residual fragments of foreign organic matter in the soft tissue, which can cause secondary infections such as Staphylococci and Streptococci (4).

 

Typically, x-rays are used first to try and identify a foreign body in the tissue, though are not always successful in doing so.  An MRI may be indicated to identify fine fin spines and tiny bones lodged in the body’s tissue. The surgical removal of the foreign body is important.  Failure to seek and remove the foreign body may lead to persistence of infection (4). Multiple surgical procedures may be required, and the patient is put on antibiotics to prevent infection. Physical therapy may be required after surgery to regain mobility of the hand.

 

If this type of injury goes untreated it can result in permanent disability and hospitalization for infection. Though the area may look as if it has healed, but is still tender, swollen, discolored, or abnormal in any way, individuals are urged to see a hand specialist.

 

Prevention and Precaution
Understanding the unique aspects of the marine life occupying the waters you’re sporting and utilizing protective gloves and garments while fishing can go a long way in injury prevention.  As the largest organ of the human body, our skin serves as a protective barrier.  When any area is compromised, our entire body is compromised. Individuals with other health conditions, such as diabetes or immune deficiency disorders should be particularly cautious and consult a hand specialist for proper wound care.

If not addressed properly, even seemingly minor fishing injuries can result in serious infection, lingering weakness or permanent disability – inhibiting participation in the sport you love.

 

References

 

How Your “Musculoskeletal Mindset” Can Impact Injury Risk at Work

While the study of orthopedics has traditionally placed emphasis on the physical influencers impacting our bones, tendons, ligaments and other surrounding soft tissue comprising the musculoskeletal system, new research now spotlights the increasingly important role of workplace “psychosocial” factors on musculoskeletal disorders (MSD).Tired man being overloaded at work

According to the Canadian Centre for Occupational Health and Safety (CCOHS), a workplace psychosocial factor is defined as “a non-physical aspect of the workplace that is developed by the culture, policies, expectations and social attitude of the organization.” [1]

Basically, psychosocial factors umbrella the different emotional responses to the demands placed on workers while performing their job –  including frustration, dissatisfaction, depression and despair. The resulting stress induces physiological responses that can contribute to the development of musculoskeletal disorders.

New research reported by the CCOHS identifies some physiological responses to psychosocial factors, including:

  • Increased blood pressure, which in small joint spaces can increase pressure on tendons, ligaments and nerves.
  • Increased fluid pressure over a prolonged period of time can also increase pressure in joints and on surrounding soft tissue as well as the carpal tunnel.
  • Reduction of growth functions can reduce production of collagen and consequently the body’s ability to heal or recover after performing work functions.
  • Over time a decreased sensitivity to pain can prompt workers to work beyond their body’s physical capacity, predisposing it to injury.
  • Increased muscle tension can increase pressure on and around the joints and may cause excessive use of force during certain activities and movements.
  • The body’s heightened state of sensitivity may overburden the musculoskeletal system by prompting a person to lift more, work faster, etc.

It is difficult in our current healthcare environment to directly attribute “workplace psychosocial factors” as a cause of workplace MSD, because of the many other factors that contribute to such disorders/injuries (biomechanical, etc.). Increasingly, though, evidence and newly published scientific research studies are helping to spotlight the role that these factors play, and the link between “stress induced physiological changes” and musculoskeletal disorders.

Additionally, a growing number of research studies are reporting a link between emotional disorders (anxiety, depression) and medical and surgical complication rates, lower patient satisfaction scores and readmission risk in joint replacement patients. [2,3]

There will likely be much more research on these topics in the coming years.

This new information underscores the importance of identifying and addressing psychological stressors and our response to them, as they are proving to have a significant impact on not only the cardiovascular but also the musculoskeletal system – two vital contributors to overall health and well-being.

 

References

  • Canadian Centre for Occupational Health and Safety (CCOHS), cchos.ca , https://www.ccohs.ca/oshanswers/psychosocial/musculoskeletal.html .
  • Wood TJ, Thornley P, Petruccelli D, et al. Preoperative predictors of pain catastrophizing, anxiety and depression in patients undergoing total joint arthroplasty. J Arthroplasty. 2016 Dec;31(12):2750-2756.
  • Gold HT, Slover JD, Joo L, et al. Association of depression with 90-day hospital readmission after total joint arthroplasty. J Arthroplasty. 2016 Nov;31(11):2385-2388.

 

 

The Vitamin D Deficiency Dilemma and What It Means to Bones…and Our Health

Shedding some light on the high and low of it

Vitamin D deficiency has become a growing trend in the United States and is now prompting physicians in different areas of specialty to test Vitamin D levels in patients.Our Need for Vitamin D

While low Vitamin D levels have always played an important role in orthopedics, insufficient levels are now also linked to a wide range of other health issues – from Diabetes and Cardiovascular Disease to cancer (1).

Measuring Vitamin D status in blood levels of a form known as 25-hydroxyvitamin D [25(OH)D] has become an important part of health screenings.

While orthopedic specialists treating patients for a bone fracture today routinely test Vitamin D levels in patients, increasingly physicians in other areas of specialty are including such tests for their patients as well.

A Growing Trend in Vitamin D Deficiencies

A growing trend in low Vitamin D levels among a broad range of ages has prompted the National Institutes for Health (NIH) and Centers for Disease Control and Prevention (CDC) to assess possible causes, further exploring the link between Vitamin D in not only bone health but other diseases as well.  The growing trend, which is seen not only in the United States but worldwide, has been called a pandemic and prompted researchers to launch studies into the causes and the implications on overall health (2).

It is believed that lifestyle changes, growth in obesity, increase use of medication and changes in diet (reduction in nutrient rich foods and increase in processed, packaged nutrient deficient) are all contributors to this trend.

While some study results have caused daily intake recommendations to increase from 200 IU to 400 to 600 IU to address the deficiencies, many believe much higher amounts are required (4,000 to 10,000 IU daily) to reach optimal levels and achieve maximum health benefits.  Recommended daily intake and appropriate supplementation for those showing a deficiency continue to evolve. Recommendations established by the Institute of Medicine, 2011 are used as a general guideline. Ongoing research will continue to fuel this discussion.

Vitamin D and its Role in Bone Health

Vitamin D is a fat-soluble vitamin, which is essential for maintaining mineral balance in the body. Its most active form in humans is Vitamin D3 (cholecalciferol), which can be synthesized in the skin with exposure to ultraviolet-B (UVB) radiation from sunlight.

Vitamin D3 conversion and use within our body.

Vitamin D3 metabolism and use within our body.

Plants can synthesize ergosterol by ultraviolet light, which is converted to vitamin D2 (ergocalciferol), but is a less active form of vitamin D (less than 30% of Vitamin D3) (3).

Vitamin D is necessary for the proper absorption of calcium, which together have shown to reduce risk of osteoporosis, assist in the healing of bone fractures and decrease risk of future bone breaks. Vitamin D has other roles in the body as well, including modulation of cell growth, neuromuscular and immune function and reduction of inflammation (4).

When exposure to UVB radiation is insufficient, adequate intake of vitamin D from the diet (Vitamin D-fortified foods and supplements) is essential for optimal health.

After Vitamin D is consumed in the diet or synthesized in the skin, the biologically inactive form then enters the circulation and is transported to the liver, where 25(OH)D is formed.  This is the major circulating form of vitamin D and the indicator of vitamin D status in the body. Increased exposure to sunlight or increased dietary intake of Vitamin D-enriched foods and/or Vitamin D3 supplements increases blood levels of 25(OH)D, making the blood 25(OH)D concentration an effective indicator of Vitamin D nutritional status.

Causes of Vitamin D Deficiency

While studies continue to explore possible causes of the widespread Vitamin D deficiency, a number have already been identified.  Some are the result of societal changes such as increased use of sun blocks/sun screens for fear of skin cancer (limiting unprotected sun exposure) and changes in our diet (processed, nutrient deficient foods versus nutrient and Vitamin D-rich foods). Both of which have gradually reduced the amount of Vitamin D intake we receive.

 Other possible causes of Vitamin D Deficiency include:

1.) Obesity

Some studies suggest that a higher BMI leads to lower 25(OH) D (4). Greater amounts of subcutaneous fat sequesters more of the vitamin and alter its release into circulation (5).

2.) Naturally dark-skinned individuals

Greater amounts of the pigment melanin in the epidermal layer (resulting in darker skin) reduces the skin’s ability to produce Vitamin D from sunlight.

3.) Certain Medications

Corticosteroid medications such as prednisone (often prescribed to reduce inflammation) can reduce calcium absorption and hinder Vitamin D metabolism. Other weight-loss, cholesterol-lowering and epileptic seizure medications have also been implicated in reduced calcium absorption and Vitamin D levels.

4.)  Age

As we age, our skin cannot synthesize Vitamin D as efficiently. The elderly are also likely to spend more time indoors, leading to inadequate intakes of the vitamin.

Increasing Vitamin D Levels

While it is difficult today to reach the recommended levels of Vitamin D without supplementation, below are some of the best sources that may reduce the quantity of supplements required.

Calcium and Vitamin D-rich foods can help support strong bones, decrease risk of disease.

Calcium and Vitamin D-rich foods can help support strong bones, decrease risk of disease.

  •  Unprotected sun exposure (10 – 20 minutes several times a week depending on skin color and geographical location).
  • Vitamin D-rich foods such as fatty fish (salmon, tuna, mackerel), beef liver, cheese and egg yolks.
  • Vitamin D-fortified foods such as milk, orange juice, margarine and butter.
  • Vitamin K2, which is linked toimproved use of Vitamin D3 and calcium (6).

 

References

  1. Holick MF. Vitamin D: importance in the preventioin of cancers, type 1 diabetes, heart disease, and osteoporosis.  Am J Clin Nutr. 2004;79(3):362-371.
  2. Holick MF. The vitamin D Deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med. 2008;29(6):361-8.
  3. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89(11):5387-5391.
  4. Institutes of Health, Office of Dietary Supplements – https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ .
  5. Vimaleswaran KS, Berry DJ, Lu C et al. Causal relationship between obesity and Vitamin D status:  bi-directional Mendelian randomization analysis of multiple cohorts. 2013 – http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001383.
  6. National Institutes of Health, Office of Dietary Supplements – https://ods.od.nih.gov/factsheets/VitaminK-HealthProfessional/

 

Dr. Korsh Jafarnia is one of Houston’s leading board certified, fellowship trained hand and upper extremity specialists.  A member of UT Physicians, Dr. Jafarnia is affiliated with Memorial Hermann IRONMAN Sports Medicine Institute at Memorial City and the Texas Medical Center.  He also serves as an assistant professor in the Department of Orthopedic Surgery at McGovern Medical School. Call 713.486.1700 for an appointment, or go to www.korshjafarniamd.com to

Cowboy Casualties and the Rigors of Rodeo Life

While the Houston Livestock Show and Rodeo has come and gone, the rodeo athletes who kept us captivated as they rode, roped and wrangled their way across the arena for the duration are on to a new city – and not even half way through their rodeo season.

The life of a rodeo athlete, many true cowboys at heart, is one of unyielding dedication and physicality.

Those who have participated since youth in rodeo events have built both strengths and vulnerabilities to the ongoing rigors of rodeo life. Proper mental and physical conditioning are key in avoiding serious injury.Rodeo Quote

While many of the injuries commonly associated with these athletes include concussions and fractures, others are the result of ongoing strain placed on the same limbs, ligaments and joints day in and day out for months at a time.

Many rodeo athletes begin in their teens, tie-down roping calves before progressing to adult wrangler, bull or bare back rider.  The years of hand and upper extremity strain predisposes this athlete to tendonitis in the hand, wrist, elbow and shoulder. Known as a repetitive stress or overuse condition, without proper treatment it can cause chronic inflammation, joint instability and eventually the early onset of arthritis.

Recognizing early signs of tendinopathic injuries and conditions and establishing an effective treatment program is key.

Tendonitis

Tendonitis (also spelled Tendinitis) is the inflammation of the tendons and other soft tissue connecting muscle to bone.  It is most often caused by repetitive movement, placing strain on the tendon and negatively impacting the affected area over time.  It may also occur following a sudden more serious injury such as a fracture or dislocation.

Tendonitis can affect different parts of the body.  Some of the commonly diagnosed upper extremity tendinopathies include Tennis Elbow, Golfer’s Elbow, deQuervain’s Tenosynovitis, Pitcher’s Shoulder and Swimmer’s Shoulder – named after the repetitive motion and sport implicated.  Though, many other activities and types of sports can result in one of these types of tendinopathies as well.

Among rodeo athletes, wrist tendonitis and tendon damage is particularly common, both as a result of the repetitive stress on the wrist and fractures and other trauma this athlearthritis_tendinitis_elbow_strainte sustains.

Symptoms

Symptoms of tendonitis may include;

  • Pain and swelling
  • A feeling of friction as the tendon moves
  • Warmth and redness about the affected area
  • A lump that develops along the tendon
  • Difficulty moving

A tendon rupture may result in a gap felt in the line of the tendon and would manifest with weakness or lack of function of that muscle.

 

Tendinosis

Tendinosis is often referred to as “chronic tendonitis” and is damage to a tendon at a cellular level.  In fact, “osis” represents a pathology of “chronic degeneration” without inflammation.  Key identifiers include disrupted collagen fibers within the tendon, increased cellularity and neovascularization.  This condition is thought to develop from micro tears, repeated injury and increases the risk of tendon rupture. While pain associated with this condition may be addressed similarly to that of tendonitis, emphasis is on stimulating collagen synthesis and breaking the cycle of tendon injury.

Extensor Carpi Ulnaris (ECU) InstabilityWrist Tendonitis

The ECU tendon of the wrist attaches the ECU muscle to the bone and is responsible for straightening and rotating as well as gripping and pulling movement in the wrist and hand. While this tendon normally slides over the forearm (near the little finger), held in place by the retinaculum (ligament-like structure), damage to the area can cause it to slip in and out of place (sublux) or dislocate completely.

Treatment

Treatment for and recovery from a tendinopathic condition will depend on the type and severity.  While minimally invasive corticosteroid injections have proven effective in relieving pain, rest from the repetitive activity contributing to the condition is also indicated.  Stretching and strengthening exercises are also proving effective.

In severe cases, or when the tendon becomes displaced and nonsurgical treatment fails to resolve the problem, surgical intervention may be indicated.  Surgical intervention may include repair of the retinaculum, tendon lining (tendon sheath), or tendon – or to replace the tendon if it is torn.

Prevention

While many injuries in the life of a rodeo athlete cannot be avoided, damage can be reduced by staying fit and strong overall.  Strength and flexibility, combined with periods of rest and other activities involving different muscle groups will help reduce risk of injury and the impact of a tendinopathic condition.

According to long time rodeo professional and bareback rider Cody Goodwin, “every ride is like getting in a car wreck.”

“You have to be in pretty darn good shape, which is why I jog four miles every other day and lift weights every other day – to develop lean muscle mass,” said Goodwin.

“I take good care of my body, so that I can, at my age, continue to compete with 20 and 25-year-old riders,” added the 41-year-old rodeo veteran.

Dr. Korsh Jafarnia is the hand and upper extremity specialist at UT Physicians / Memorial Hermann IRONMAN Sports Medicine Institute (Memorial City and Texas Medical Center locations), 713.486.1700.

Hoverboard Hazards

The exciting new phenomena of “hoverboarding” has made hoverboards one of the most popular technological “toys” on the market today.  Intended for agile adolescents, its appeal has also drawn parents and other adults nostalgic for those days gone by.

The technology of the hoverboard, known as a smartboard or balance board as well, doesn’t actually create a hover but rather a forward and backward motion on a sideways skateboard of sorts, with either a large single center wheel or two smaller ones at each end.  It is automated, can reach a formidable speed of 16 mph and relies on body movement for navigation. It is basically a hands free, self-balancing electric scooter.

Concern over hoverboard safety grows amid increase in injuries.

Concern over hoverboard safety grows amid increase in injuries.

They have become the vehicle of choice for students travelling around campus and preteens maneuvering around the house and down the street to visit friends.  They light up, are stealth quiet, move as fast as one’s imagination …. and leave hands free for any other activity desired on the fly.

Unfortunately, while the mainstream hoverboard never actually leaves the ground, its ability to send riders airborne is causing increasing concern.

In fact, the Consumer Product Safety Commission has reported receiving dozens of hoverboard-related injuries from across the United States.  Houston hospitals have also reported in a recent Associated Press article seeing a sharp increase in the number of hoverboard accidents sending adult and young riders alike to the ER and urgent care clinics.

Colleges are not only restricting their use on campus, as a result of the injury risk (to the user and passers by) but also the fire hazard their electrical system poses.  The hoverboard fire hazard is covered extensively in other hoverboard reports.

Among the most common musculoskeletal injuries seen from hoverboard use include concussions, fractures, contusions and abrasions.

Concussions

While most frequently seen in sports such as football and soccer, concussions are increasingly reported in hoverboard accidents.  With no recommended safety wear, the speed and maneuverability of the device is resulting in high impact falls and collisions – resulting in concussions. The primary symptoms of a concussion include:

  • Headache
  • Trouble concentrating, feeling “foggy”
  • Nausea
  • Delayed reaction times
  • Dizziness, lightheadedness
  • Sensitivity with bright lights or loud sounds
  • Irritability

 If a concussion is suspected, an evaluation should be conducted by a physician and hoverboard and other balancing activities should be avoided.

Fractures

Wrist fractures are among the most common types of fractures seen in hoverboard accidents – distal radius fractures among the most common type of wrist fracture.  This is often the result of breaking a fall or harsh impact with an outstretched arm. Other hoverboard fractures and dislocations have been seen in the fingers. Symptoms of a fracture or dislocation can be evident with extreme pain, swelling and slight disfigurement or subtle with only slight swelling and pain.

Most wrist fractures and finger fractures and dislocations can be treated nonsurgically, depending on the severity of the fracture or dislocation.  A splint or other bracing may be indicated, along with anti-inflammatory medication and rest/refrain from extracurricular activity.

Contusions and Abrasions

Collisions causing contusions and abrasions are frequently reported on hoverboards in the absence of safety gear. While most are minor cuts and scraps, some may result in open wounds requiring stiches, while potentially damaging nerves and other soft tissue.  Swollen, discolored injuries lasting more than a month should be further evaluated by a physician.

Preventing Hoverboard Injuries

The lack of safety standards and recommended safety gear/wear is a concern among hoverboard retailers and healthcare providers alike.  But, parents do not have to wait until such recommendations are established.  If a hoverboard is in your family’s future, take the proper precautions. As with any sport, safety gear recommended or not, will provide a bit of assurance.

Cyclists travelling at much less speeds not only have both hands and legs navigating a two-wheeled structure designed for the road, but also helmets, gloves, shoes and other gear designed for safety and the sport. This is also true of rollerbladers and skateboarders. Invest in the safety of your hoverboard rider and purchase protective safety gear.

Help young riders understand the potential risks for injury and encourage that they err on the side of caution to avoid the ER.

Have fun and be safe!

Read a hoverboard article from a young contributing writer.

 

Baseball Fit – Preventive Exercises for a Winning Season

As weather warms and winter sports wind down, attention turns to the promise of a new baseball season and the championships ahead.

Now is the time to begin preparing.High School baseball

At the core of a successful team are strong players – physically strong, well rested and well conditioned.

Baseball is one of the few sports played almost daily throughout the entire season.  For young players beginning in little league, this amounts to a lot of plays by high school.  The frequency of repetitive stress injuries in youth baseball have increased over the years, particularly with the rise in special “elite” teams and extended seasons. This is most evident in young pitchers, on which much research has focused and for which Pitch Count guidelines have been developed.

Although baseball is not considered a contact sport, injuries can result from contact with the ball and other players, as well as poor form/technique, or an awkward movement during a play.

Some of the most common baseball injuries include:

  • Injuries in the shoulder and elbow (Little Leaguer’s Shoulder, Little Leaguer’s Elbow)
  • Knee injuries
  • Muscle pulls
  • Ligament injuries
  • Fractures (Finger, Distal Radius/Wrist)
  • Concussions 

While some injuries resulting from collision with another player are getting hit by the ball cannot be avoided, exercise can aid in reducing risks or preventing many repetitive stress related injuries.

Repetitive injuries are the result of repetitive use, stress and trauma to the soft tissues of the body (muscles, tendons, bones and joints), which are not given adequate time for proper healing. They are sometimes called cumulative trauma, repetitive stress or overuse injuries.

To avoid such repetitive stress conditions and muscle fatigue, players should have a dedicated fitness program – ideally one that is also specific to the position they play.  This should include overall strengthening and endurance, along with specific exercises to equally strengthen the muscles of the limb(s) most used. Such fitness programs should also include stretching and rest between play.

Exercise programs should also be age appropriate. Young, developing players are encouraged to build strength through resistance rather than weights. Involvement in other seasonal sports such as swimming and running can also provide excellent overall strengthening and endurance.

Strength and Conditioning Exercises – Upper Body

As a throwing sport, exercises for baseball concentrate heavily on the upper body – arms and shoulder. Core strength is also essential for pitching velocity, hitting power and running speed.

The key to any exercise program is the balanced/equal strengthening of muscle groups. For the upper body, this includes triceps/biceps, trapezius, rotator group, and deltoids.

Some Effective Arm, Shoulder and Core Exercises Include:

  • Resistance bands – These can be effective in building arm and shoulder strength. (View video on how these bands are used in exercise programs.)
  • Push ups – Traditional push ups are very effective in building upper body strength (arms, shoulders, back and core/abdominal muscles).
  • Pull ups – Using your own body weight/strength these work on the biceps, upper shoulder and back, upper abdominals and obliques.
  • The Plank – strengthens the core, lower back and oblique muscles. (View video demonstration of the Plank.)

Exercises to Improve Leg Strength

Lower body strength and conditioning is as important as upper body training for young athletes. Leg strength impacts throwing velocity, bat speed/force and running speed.

Squats, lunges and running are among the most effective ways to strengthen the lower body.

Stretching

Stretching is a very important part of an exercise program for athletes in any sport. During exercise and play muscles contract. When muscles contract, they produce tension at the point where the muscle is connected to the tendon. Stretching helps lengthen, relax and restore muscles to their natural state.

Stretching following activity is as important as stretching while warming up before practice and play.

Some easy, yet effective stretches include:

  • Elbow Pulls – Raise the right arm as though asking a question and drop the forearm behind the head though leaving the elbow in the air. Pull the elbow to the left with the left arm until you feel the stretch, hold briefly then repeat several times. Do the same on the opposite side.
  • Cross Body Arm Pulls – Straighten your right arm and pull it across the front of your body, cradling the forearm and elbow with the left hand, pull the arm towards the left across the body until you feel the stretch. Hold the stretch briefly, then repeat on the opposite side.
  • Shoulder Stretch – Lay face down on a floor mat and stretch arms overhead to form a “Y,” with palms facing down on the floor. With forehead on the ground, retract shoulder blades while lifting arms off the ground (still outstretched). Hold for a couple of seconds while squeezing the shoulder blades together. Be careful not to “shrug” the shoulders up. Return to starting position and perform several sets of 10 repetitions. To work the back a little differently, perform this same exercise with the arms straight out to your sides, forming the shape of a “T.”
  • Runner’s Lunge – Position into a deep lunge on your right leg, drop the knee of your left leg and lean forward over the right quad until you feel the stretch, hold for several seconds. Repeat on opposite leg.
  • Hamstring Stretch – Stand flat on the floor with feet a little less than hip width apart. Lean forward and place palm of your hands flat on the floor just in front of your feet, hold for several seconds.

TOP PREVENTION TIP

Resting is as important as any of the components in a successful training program.

Summer Sideliners

Common summer injuries of the hand, wrist and elbow

As we hike, bike, raft and climb our way through summer adventure, mishaps are bound to happen.  Some of the most common we see include wrist fractures, tennis elbow syndrome and cuts and lacerations to the hand.

Recognizing and treating mishaps that may occur while maximizing these brief few summer months can make a difference in how ready we are for all that awaits us in the fall.

Wrist Fractures

The wrist is susceptible to injury, often used as a first line of defense to break a fall, shield us from impact and soften a blow.  The wrist is comprised of eight small carpal bones, two forearm bones (radius and ulna) and four articulations or joints – which allow the wrist to bend and straighten, move from side-to-side and twist with a broad range of motion.  A force to the hand and wrist may result in a fracture of any one or several of these bones.  While a fracture to one of the smaller carpal bones may only be visible on x-ray, more common distal radius fractures are usually evident – crooked or deformed in appearance.  A wrist fracture may cause pain and swelling and should be immediately addressed.

Tennis Elbow Syndrome (Lateral Epicondylitis)

Though named for the sport frequently causing the condition in tennis players, Tennis Elbow Syndrome is in fact most often caused by everyday activity and diagnosed in those who have never played tennis.  Affecting the outside (lateral) portion of the elbow, tennis elbow syndrome is considered an “overuse” condition.  It is the result of strain placed on the muscles and tendons that attach to the bone.  Also caused by trauma, tennis elbow syndrome can cause pain with gripping, lifting and grasping.

Cuts and Lacerations

Cuts and lacerations to the hand are very common during the summer months as our hands are integral in most outdoor activity and projects. Tendon lacerations are also often the result of trauma to the hand or fingers.  Tendon lacerations may affect either the flexor or extensor tendons.  These types of lacerations often also result in other deep structure damage and require surgical repair.  The cut ends of a tendon must be brought back together in order for the cells inside the tendon to begin the healing/repair process.  Preventing infection in an open wound is also a primary concern with these types of injuries.